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1 INTRODUCTION

Robotics is a vast field encompassing ideas from disciplines such as mechanical engineering to
artificial intelligence. From the view of artificial intelligence, the goal is to create robots which are
autonomous and can learn in real time. The emphasis is placed on learning. A robot should be able
to learn about and adapt its behaviour to its environment.

The problem of creating autonomous robots using artificial intelligence has proven to be difficult. A
central issue is that the world is partially observable, and many observations which are needed to
make informed decisions are not available to the robot. Unlike robots, humans are able to make many
predictions about the world in short periods of time, and such predictions inform the decisions we
make. For example, if you need to make it to the airport before 9:30 a.m., you can make an informed
guess on what time to leave your house. You can do this even though the amount of time it takes
to drive to the airport is not directly known before-hand. The human brain is excellent at making
multiple predictions about the future and taking all of these predictions into account to make an
informed decision. This phenomenon though has proven difficult for robots.

This paper is a survey of methodologies used to account for such behaviour in robots. In particular,
this paper considers the reinforcement learning formalism and discusses how general value functions
(GVFs) can be used as both predictive state representations and predictive approaches to knowledge
in order to enable robots to make informed decisions.

2 A SHORT SUMMARY OF REINFORCEMENT LEARNING AND GENERAL
VALUE FUNCTIONS

Reinforcement learning is a way to formalize sequential decision making. In reinforcement learning,
an intelligent agent (for example, a robot) finds itself in some environment and must take actions
which alter the environmental state. Upon taking an action, the agent receives a reward. The goal of
the agent is to maximize rewards, and it must therefore learn which actions lead to high rewards.

This process is modelled as a Markov Decision Process which is represented as a tuple (S,A,R, p, γ),
where S is the set of possible states, A is the set of possible actions, R is the set of possible rewards,
and p(s′, r | s, a) is the transition dynamics which measures the probability density of transitioning
to state s′ and receiving reward r after taking action a in state s1. The discount factor, 0 ≤ γ ≤ 1
determines the relative importance of near and future rewards. The actions the agent takes in a state
s ∈ S are drawn from its policy a ∼ π(· | s), which is a function mapping states to probability
distributions over actions. The agent must learn a policy which selects actions to maximize the reward
received.

A popular method to determine which actions lead to high rewards is by using temporal-difference
learning (Sutton, 1988) to learn value functions. A state-value function is a function which measures
the expected, discounted sum of future rewards attainable after some state s ∈ S when following the

1Here, we consider continuous state spaces and continuous rewards, that is S ⊆ Rn for some n ∈ N and
R ⊆ R. It is also possible to consider discrete state spaces and discrete reward by considering p to be a
probability mass function.
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agent’s policy:

vπ(s) = Eπ [Gt | St = s] = Eπ

[
T∑

k=1

γk−1Rt+k | St = s

]
(1)

where T denotes the final time step, which may be infinite2, and Gt is defined implicitly. An action-
value function measures the expected, discounted sum of future rewards attainable after taking some
action a ∈ A in state s ∈ S and then following the agent’s policy thereafter:

qπ(s, a) = Eπ [Gt | St = s,At = a] = Eπ

[
T∑

k=1

γk−1Rt+k | St = s,At = a

]
(2)

Value functions can be generalized to measure the expected, discounted sum of any future signal.
The future signal is referred to as the cumulant while the discount factor is referred to as the time
scale. These general value functions (GVFs) can be used to answer predictive questions about the
agent’s current state or future. For example, a robot could use GVFs to predict how long it might
take to drive to the airport. Such predictive state representations are useful as they can be used to
inform a robot’s real-world decisions. Similar to value functions, GVFs are typically learned using
the method of temporal-differences (Sutton, 1988). In the next section, we provide a survey on how
GVFs have been combined with robots to both answer predictive questions and generate predictive
representations about the robot’s state.

3 A SURVEY OF GVFS IN ROBOTS

One of the first major breakthroughs in utilizing GVFs in robotics was the Horde architecture (Sutton
et al., 2011). This architecture was designed to allow a robot to answer many predictive or goal-
oriented questions about it or its environment. Each question is answered by a single reinforcement
learning agent which learns a GVF. Each of these GVF learners is referred to as a daemon, and has its
own policy, timescale, and cumulant corresponding to the question the daemon answers. Sutton et al.
(2011) demonstrated that Horde could be used to learn in real-time on a mobile robot to accurately
predict the answers to questions such as:

1. How much time will elapse before I hit an obstacle?

2. How much time do I need in order to stop before hitting the obstacle?

The authors also demonstrated that Horde could be used to learn goal-oriented behaviours in real-time
on a mobile robot. In particular, the authors showed that the Horde architecture could be used to train
a mobile robot to stay near light even when the robot learned under a random behaviour policy.

Modayil et al. (2012) showed that nexting, the ability of humans to predict what might happen next, is
possible on robots. Whereas Sutton et al. (2011) focused on answering off-policy questions using the
Horde architecture, Modayil et al. (2012) focused on using GVFs to answer thousands of on-policy
questions in parallel and at different time scales. In their experiments, Modayil et al. (2012) showed
that a mobile robot could successfully predict both future state representations and changes in its
sensor readings at multiple time scales. This was one of the first times GVFs had been used in
real-time on a robot to answer thousands of questions about both the state of the robot and the state
of the environment.

Until this point, learning thousands of GVFs in parallel had only been demonstrated when learning
on-policy. This was a significant limitation to the utility of GVFs, since an important part of life-long
learning, where the robot continually learns over the course of its lifetime, is off-policy learning.
White et al. (2012) demonstrated the ability of a mobile robot to learn thousands of GVFs off-policy
and in real-time using the Horde architecture (Sutton et al., 2011) and a random behaviour policy.
To do so, learning algorithms which are stable under off-policy updating such as GTD(λ) (Maei,
2011) were utilized. This work demonstrated that Horde could be utilized to learn hundreds of GVFs
from 6 different policies. The authors also demonstrated that their methodology scaled to many
policies. Using the same, random behaviour policy, the authors learned GVFs for 1,000 randomly

2For value functions to be well-defined, we require 0 ≤ γ < 1 when T is infinite.
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generated policies over 4 different time scales. This demonstrated that learning about many different
behaviours (through GVFs) is possible in real-time on a robot. Computation was performed on a
laptop via a wireless link to the robot, but given sufficient computational power these computations
could have been performed directly on the robot. This was the first demonstration of large-scale
off-policy learning of GVFs in real-time on a robot.

A large area of research in robotics is modular prosthetic limbs, and how these limbs can be properly
controlled by humans. Such a task has proven difficult due to a disparity between the number of
electrical signals the human user can send to the prosthetic limb through muscle tissue and the degrees
of freedom of the prosthetic limb’s many actuators. GVFs may be able to rectify this issue and have
been used in the past to increase the utility of prosthetic limbs (Sherstan, 2020; Parker et al., 2019;
Pilarski et al., 2013; Vasan & Pilarski, 2018).

Pilarski & Sherstan (2016) used approximately 18,000 GVFs to predict information about the velocity,
position, impedance, and temperature of the many actuators in a robotic prosthetic arm. After only
six minutes of training, the prosthetic arm not only could detect errors due to human perturbation but
also could anticipate when future errors would occur.

Günther et al. (2018) used GVFs to learn to predict and anticipate signals on a robotic prosthetic arm.
Sensor data from the robotic arm was packed into UDP packets of 3,520 bits. These bits were then
used as both state inputs and cumulants for a first Horde of GVFs (one GVF for each bit). Using
the prediction of this first Horde as input, a second Horde of GVFs predicted surprise as unexpected
daemon error (UDE) (White, 2015), a measure of unexpected change in predicted signal due to
changes in the environment. UDE compares the prediction error of the current signal to the average
past prediction error and will remain low both during regular learning and when observing noise in
the learned signal. UDE will only significantly increase if changes in the environment alter the TD
error of the learned signal. In this way, UDE can be viewed as a sort of surprise due to changes in the
environment. In their experiments, Günther et al. (2018) showed that a robotic prosthetic arm was
able to learn to anticipate surprise, measured as UDE, when it was perturbed in a recurring fashion.
Günther et al. (2018) suggest that abstract predictive models such as predictions of surprise can serve
to increase a robots understanding of itself and its environment under continual learning.

Humans are excellent at utilizing past experiences to generalize to new situations; one major issue
with GVFs is that when a GVF is newly added in the middle of training, a robot’s past experience
cannot be utilized to learn the newly added GVF. In a continual learning setting on a prosthetic
arm, Sherstan et al. (2018) demonstrated that successor representations (Dayan, 1993) could be used
mitigate this issue. They showed that successor representation can improve both sample efficiency
and learning speed when incrementally adding new GVFs during training. In their experiments,
Sherstan et al. (2018) had a human user control a robot arm by guiding its end effector through a maze
12 times over 50 minutes. GVFs for six different predictive targets were learned: the current, position,
and speed of both the elbow and shoulder joints. During the experiment, new GVFs were added at
set time periods; GVFs were learned from two different sets of features – successor representation
features and direct state features. They found that successor representations improved both the sample
efficiency and speed of learning of the newly added GVFs.

Until this point, GVFs were used to answer a question at a specific time scale. For example, if I
drive straight for ten seconds, how soon until I hit a wall? Sherstan et al. (2019) introduced Γ-nets,
which allow GVFs to generalize over time scale. Γ-nets work by training a standard GVF with two
additional inputs – the timescale parameter γ and the expected number of steps until termination
τ = 1

1−γ . In this way, a GVF can predict the answer to a question at a given time, the time indicated
by γ. Sherstan et al. (2019) showed that Γ-nets could accurately predict the shoulder joint speeds of a
robotic prosthetic arm at multiple time scales in the future. In their experiments, the end effector of a
robotic arm was guided through a wire maze by a human controller. They trained three GVFs and
one Γ-net to predict the shoulder joint speed at three different time scales. At each time scale, the
predictions of the Γ-net were as accurate as the corresponding GVF, yet the Γ-net was significantly
more flexible and possessed fewer parameters than the three GVFs combined.

Finally, Faridi et al. (2022) demonstrated that a robotic exoskeleton, the Indego exoskeleton, could
utilize GVFs to learn the walking preferences of a human user. This was the first time GVFs had been
used as prediction mechanisms for lower-limb controlled robotic prosthetics. The Indego exoskeleton
is intended to assist humans in walking and has actuated hip and knee joints. In their experiments,

3



Faridi et al. (2022) had a human user control the exoskeleton by selecting three different walking
speeds (slow, medium, fast) and two different walking directions (turn left, turn right). GVFs were
used to anticipate the next most likely walking mode to be selected by the user at an accuracy of
approximately 83%, almost double that of the non-adaptive baseline strategy.

4 CONCLUSION

A central barrier to applications of robotics to real-world problems is the inherent partial observability
of our world. Such partial observability limits robotics by providing insufficient data to make
informed decisions. One method to deal with such partial observability is the use of general value
functions (GVFs) to form predictive state representations. GVFs have been used to improve both
mobile and manipulator robots and hold much promise for increasing the applicability of robots to
real-life situations.
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